Engineering drawings: common features
Drawings convey the following critical information:
Geometry – the shape of the object; represented as views; how the object will look when it is viewed from various standard directions, such as front, top, side, etc.
Dimensions – the size of the object is captured in accepted units.
Tolerances– the allowable variations for each dimension.
Material – represents what the item is made of.
Finish – specifies the surface quality of the item, functional or cosmetic. For example, a mass-marketed product usually requires a much higher surface quality than, say, a component that goes inside industrial machinery.
Drawings convey the following critical information:
Geometry – the shape of the object; represented as views; how the object will look when it is viewed from various standard directions, such as front, top, side, etc.
Dimensions – the size of the object is captured in accepted units.
Tolerances– the allowable variations for each dimension.
Material – represents what the item is made of.
Finish – specifies the surface quality of the item, functional or cosmetic. For example, a mass-marketed product usually requires a much higher surface quality than, say, a component that goes inside industrial machinery.
Line Styles and Types : Standard Engineering Drawing Line Types
A variety of line styles graphically represent physical objects. Types of lines include the following:
Visible – are continuous lines used to depict edges directly visible from a particular angle.
Hidden – are short-dashed lines that may be used to represent edges that are not directly visible.
Center – are alternately long- and short-dashed lines that may be used to represent the axes of circular features.
Cutting Plane – are thin, medium-dashed lines, or thick alternately long- and double short-dashed that may be used to define sections for section views
A variety of line styles graphically represent physical objects. Types of lines include the following:
Visible – are continuous lines used to depict edges directly visible from a particular angle.
Hidden – are short-dashed lines that may be used to represent edges that are not directly visible.
Center – are alternately long- and short-dashed lines that may be used to represent the axes of circular features.
Cutting Plane – are thin, medium-dashed lines, or thick alternately long- and double short-dashed that may be used to define sections for section views
Section – are thin lines in a pattern (pattern determined by the material being "cut" or "sectioned") used to indicate surfaces in section views resulting from "cutting." Section lines are commonly referred to as "cross-hatching."
Orthographic Projection
The orthographic projection shows the object as it looks from the front, right, left, top, bottom, or back, and are typically positioned relative to each other according to the rules of either first-angle or third-angle projection.
First angle projection is the ISO standard and is primarily used in Europe. The 3D object is projected into 2D "paper" space as if you were looking at an X-ray of the object: the top view is under the front view, the right view is at the left of the front view.
Third angle projection is primarily used in the United States and Canada, where it is the default projection system according to BS 8888:2006, the left view is placed on the left and the top view on the top.
Not all views are necessarily used, and determination of what surface constitutes the front, back, top and bottom varies depending on the projection used.
The orthographic projection shows the object as it looks from the front, right, left, top, bottom, or back, and are typically positioned relative to each other according to the rules of either first-angle or third-angle projection.
First angle projection is the ISO standard and is primarily used in Europe. The 3D object is projected into 2D "paper" space as if you were looking at an X-ray of the object: the top view is under the front view, the right view is at the left of the front view.
Third angle projection is primarily used in the United States and Canada, where it is the default projection system according to BS 8888:2006, the left view is placed on the left and the top view on the top.
Not all views are necessarily used, and determination of what surface constitutes the front, back, top and bottom varies depending on the projection used.
Isometric projection
The isometric projection show the object from angles in which the scales along each axis of the object are equal. Isometric projection corresponds to rotation of the object by ± 45° about the vertical axis, followed by rotation of approximately ± 35.264° [= arcsin(tan(30°))] about the horizontal axis starting from an orthographic projection view. "Isometric" comes from the Greek for "same measure." One of the things that makes isometric drawings so attractive is the ease with which 60 degree angles can be constructed with only a compass and straightedge.
Isometric projection is a type of axonometric projection. The other two types of axonometric projection are:
Dimetric projection
Trimetric projection
The isometric projection show the object from angles in which the scales along each axis of the object are equal. Isometric projection corresponds to rotation of the object by ± 45° about the vertical axis, followed by rotation of approximately ± 35.264° [= arcsin(tan(30°))] about the horizontal axis starting from an orthographic projection view. "Isometric" comes from the Greek for "same measure." One of the things that makes isometric drawings so attractive is the ease with which 60 degree angles can be constructed with only a compass and straightedge.
Isometric projection is a type of axonometric projection. The other two types of axonometric projection are:
Dimetric projection
Trimetric projection
Oblique projection
An oblique projection is a simple type of graphical projection used for producing pictorial, two-dimensional images of three-dimensional objects:
it projects an image by intersecting parallel rays (projectors)
from the three-dimensional source object with the drawing surface (projection plan).
In both oblique projection and orthographic projection, parallel lines of the source object produce parallel lines in the projected image.
An oblique projection is a simple type of graphical projection used for producing pictorial, two-dimensional images of three-dimensional objects:
it projects an image by intersecting parallel rays (projectors)
from the three-dimensional source object with the drawing surface (projection plan).
In both oblique projection and orthographic projection, parallel lines of the source object produce parallel lines in the projected image.